2中国科学院西双版纳热带植物园, 种子创新研究院,热带植物资源可持续利用重点实验室, 勐腊, 666303
作者 通讯作者
《分子植物育种》网络版, 2020 年, 第 18 卷, 第 36 篇
收稿日期: 2020年09月06日 接受日期: 2020年09月08日 发表日期: 2020年09月15日
花青素是植物次生代谢的产物,具有光保护和抗氧化等功能。本研究克隆了大戟科木本植物小桐子JcSEUSS1的cDNA,序列比对表明JcSEUSS1具有一个高度保守的LIM结构域,与其他物种SEUSS蛋白具有很高的相似性。通过实时荧光定量PCR检测JcSEUSS1基因在小桐子不同组织部位的表达谱,发现该基因在小桐子的各个组织器官均有表达。使用CaMV35S组成型启动子在小桐子中超量表达该基因会显著提高叶片和叶柄中花青素的含量。可能是由于转基因植株中与花青素生物合成相关的查尔酮合成酶基因JcCHS和查尔酮异构酶基因JcCHI的表达量显著上调而导致的。研究结果表明JcSEUSS1基因可能正调控小桐子叶中的花青素合成。
Over-expression of JcSEUSS1 from Jatropha curcas Induces the Accumulation of Anthocyanin in Leaves
Wang Jingxian 1, 2 Ming Xin 1, 2 Tao Yanbin 2 Tang Mingyong 2 * Xu Zengfu 2*
1 School of Life Sciences, University of Science and Technology of China, Hefei, 230027; 2 Key Laboratory of Tropical Plant Resources and Sustainable Use, Innovative Academy of Seed Design, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303
* Co-corresponding authors, tangmingyong@xtbg.ac.cn; zfxu@xtbg.ac.cn
Abstract Anthocyanins are a class of important secondary metabolites in plants and play important roles in photoprotection and antioxidation. In this study, we cloned the JcSEUSS1 gene from Jatropha curcas. Sequence alignment indicates JcSEUSS1 contains a highly conserved LIM domain, and the sequence of JcSEUSS1 is similar to other SEUSS proteins. The expression pattern of JcSEUSS1 in different organs of Jatropha plants was analyzed by real-time fluorescence quantitative PCR, and it was found that the gene was expressed in all tissues. Furthermore, JcSEUSS1 over-expression significantly promoted the accumulation of anthocyanin in leaves of Jatropha. The expression of chalketone synthase (JcCHS) and chalketone isomerase (JcCHI), which are involved in anthocyanin biosynthesis, were significantly up-regulated in JcSEUSS1-transgenic lines. Our results indicate that JcSEUSS1 may positively regulate the anthocyanin synthesis in leaves of Jatropha.
Keywords Jatropha curcas; JcSEUSS1; Over-expression; Anthocyanin
花青素(Anthocyanins)广泛存在于植物的各个组织部位,是一种水溶性的黄酮类色素(Cuyckens and Claeys, 2004);有利于植物抗氧化和吸引昆虫授粉,还可用于制成抗癌性药物(Holton and Cornish 1995; Wu et al., 2004; Li et al., 2007)。目前,花青素合成代谢途径在拟南芥和玉米等模式植物中研究较为清楚。其代谢途径大致分为三个阶段:第一阶段是花青素合成前体苯丙氨酸在苯丙氨酸裂解酶(phenylalanine ammonia, PAL)、肉桂酸羟化酶(cinnamate-4-hydroxylase, C4H)和4-香豆酰CoA连接酶(4-coumarate--CoA ligase, 4CL)的催化下生成4-香豆酰CoA;第二阶段是4-香豆酰CoA和丙二酰CoA在查尔酮合成酶(chalcone synthase; CHS)、查尔酮异构酶(chalcone isomerase; CHI)、黄酰酮-3-羟化酶(flavanone-3-hydroxylase, F3H)的作用下生成黄酰酮和二羟黄酮醇,这个阶段也是花青素合成代谢的关键阶段;第三阶段是二羟黄酮醇在二羟黄酮醇还原酶(dihydroflavonol 4-reductase; DFR)的催化下生成无色花青素,再经花青素合酶(anthocyanin synthetase; ANS)和类黄酮-3-葡糖基转移酶(flavonoid-3-O-glucosyltransferase; 3GT)的催化生成有色花青素(Holton and Cornish, 1995; Ferrer et al., 2008)。此外,光照、温度、干旱等环境因子以及蔗糖、茉莉酸、乙烯等化合物的水平都会影响植物花青素的合成(Christie and Jenkins, 1996; Zhang et al., 2002; El-Kereamy et al., 2003; Hara et al., 2003; Mori et al., 2007; Sperdouli and Moustakas, 2012)。
小桐子(Jatropha curcas L.)属于多年生大戟科木本油料作物,其种子油具有很高的商业价值,可用于生产生物柴油(Pandey et al., 2012)和生物航空燃油(Du et al., 2019)。同时小桐子高效的遗传转化体系为改良其生物学性状奠定了坚实的基础(Pan et al., 2010; Fu et al., 2015)。但是目前小桐子功能基因的研究主要集中于筛选影响其与分枝、开花诱导和花器官发育以及种子油含量相关的基因(Li et al., 2014; Kim et al., 2014; Ni et al., 2015; Li et al., 2017; Ni et al., 2017; Khan et al., 2018; Govender et al., 2019),对调控其花青素生物合成基因的研究较少。目前仅发现超量表达小桐子六磷酸海藻糖合成酶基因JcTPS1的拟南芥叶片中花青素含量增加(赵美丽等, 2018, 分子植物育种, 16(1): 255-261)。花青素可以保护植物免受各种生物和非生物胁迫(Zhang et al., 2013; Ahmed et al., 2014)。野生小桐子幼叶花青素含量明显高于成熟叶片,研究表明含量较高的花青素对小桐子幼叶的光系统I和光系统II具有保护作用(Ranjan et al., 2014)。茉莉酸可诱导小桐子叶片花青素的合成,从而增加植株的抗氧化能力(Lucho-Constantino et al., 2017)。
SEUSS (SEU)是动物LDB (LIM-domain-binding)蛋白的同源蛋白,由两个富含谷氨酰胺的结构域和一个高度保守的结构域组成,这个高度保守的结构域和动物的LIM结合结构域有很高的序列相似性(Franks et al., 2002)。SEU在拟南芥的幼苗、叶片和花等多个组织部位均有表达,参与了一系列生长发育过程(Franks et al., 2002; Bao et al., 2010)。主要参与调控拟南芥根、花器官以及胚珠和胚胎的发育等(Sridhar et al., 2006; Azhakanandam et al., 2008; Wynn et al., 2014; Gong et al., 2016)。本研究克隆了小桐子SEUSS (JcSEUSS1)的cDNA序列,对其表达模式进行分析,并通过在小桐子中超量表达该基因,初步研究其对小桐子叶中的花青素合成的影响。
1结果和分析
1.1 JcSEUSS的克隆和序列分析
以拟南芥SEU (NP_175051)蛋白序列作为参考,在小桐子基因组数据库(http://www.kazusa.or.jp/jatropha/)中进行同源序列比对,找到两个与拟南芥SEU有高相似性的序列,其编码的蛋白分别命名为JcSEUSS1 (XP_012066097)和JcSEUSS2 (XP_012066572),两者的序列同一性百分比为58.44%。其中JcSEUSS1 cDNA(XM_012210707)序列长度为3 842 bp,CDS序列长度为2 748 bp,编码915个氨基酸。采用DNAMAN软件对小桐子JcSEUSS1氨基酸序列与其他几个物种的SEU蛋白序列进行比对,发现其与其它几个物种均具有高度保守的LIM结合结构域(图1),因此可以推断小桐子JcSEUSS1属于LIM结构域蛋白。随后利用MEGA 10.0软件对JcSEUSS1与其他物种的同源蛋白进行系统进化树分析。结果显示小桐子(JcSEUSS1)与蓖麻(RcSEUSS)、木薯(MeSEUSS)和毛果杨(PtSEUSS)亲缘关系较近(图2)。
图1 小桐子JcSEUSS1的保守结构域 注: 与JcSEUSS1比对的物种包括: 拟南芥SEU (Accession No. NP_175051); 番茄SlSEU1 (Accession No. NP_001352551)和SlSEU3 (Accession No. XP_010322951); 蓖麻RcSEUSS (Accession No. EEF42030); 木薯MeSEUSS (Accession No. XP_021601723); 水稻OsSEU (Accession No. XP_015616772); 玉米ZmSEUSS (Accession No. NP_008670718); 氨基酸序列完全相同的部分用深蓝色表示, 部分相同的部分用浅蓝色和红色表示; SEU蛋白保守的LIM结构域用上划线标记 Figure 1 Conserved domain analysis of JcSEUSS1 Note: These homologs including Arabidopsis thaliana SEU (Accession No. NP_175051.1); Solanum lycopersicum SlSEU1 (Accession No. NP_001352551) and SlSEU3 (Accession No. XP_010322951); Ricinus communis RcSEUSS (Accession No. EEF42030) and Manihot esculenta MeSEUSS (Accession No. XP_021601723); Oryza sativa Japonica Group OsSEU (Accession No. XP_015616772); Zea mays ZmSEUSS (Accession No. NP_008670718); The dark blue shows the identically conserved protein sequences, and the partially conserved amino acid sequences are shown in light blue and red; LIM̲_bind domain in these amino acid sequences is overlined |
图2 小桐子JcSEUSS1系统进化树 注: JcSEUSS1: 小桐子; RcSEUSS: 蓖麻; MeSEUSS: 木薯; SlSEU1, SlSEU3: 番茄; PtSEUSS: 毛果杨(Accession No. NP_024456170); MdSEUSS: 苹果(accession No. XP_008381721); TcSEUSS: 可可(accession No. NP_007019358); GaSEUSS木本棉(Accession No. NP_017633449); SEU: 拟南芥; OsSEU: 水稻; ZmSEUSS: 玉米; BrSEUSS: 芜菁(Accession No. XP_009145061); SbSEUSS: 高粱(accession No. XP_021316829); SiSEUSS: 小米(accession No. XP_004977184); BdSEUSS: 二穗短柄草(accession No. XP_003568560); EgSEUSS: 油棕(accession No. XP_010921708); DcSEUSS: 铁皮石斛(accession No. XP_020680333); SmSEUSS1,SmSEUSS2: 江南卷柏(accession No. XP_024535463, No. XP_024520157); PpSEUSS: 小立碗藓(accession No. XP_024399004); MpSEUSS: 地钱亚种(accession No. OAE35334); 红框标记: JcSEUSS1 Figure 2 The phylogenetic analysis of JcSEUSS1 Note: JcSEUSS1: Jatropha curcas; RcSEUSS: Ricinus communis; MeSEUSS: Manihot esculenta; SlSEU1,SlSEU3: Solanum lycopersicum; PtSEUSS: Populus trichocarpa (accession No. NP_024456170); MdSEUSS: (accession No. XP_008381721); TcSEUSS: Theobroma cacao (accession No. NP_007019358); GaSEUSS: Gossypium arboretum (accession No. NP_017633449); SEU: Arabidopsis thaliana; ZmSEUSS: Oryza sativa; ZmSEUSS: Zea mays; BrSEUSS: Brassica rapa (accession No. XP_009145061); SbSEUSS: Sorghum bicolor (accession No. XP_021316829); SiSEUSS: Setaria italic (accession No. XP_004977184); BdSEUSS: Brachypodium distachyon (accession No. XP_003568560); EgSEUSS: Elaeis guineensis (accession No. XP_010921708); DcSEUSS: Dendrobium catenatum (accession No. XP_020680333); SmSEUSS1, SmSEUSS2: Selaginella moellendorffii (accession No. XP_024535463, No. XP_024520157); PpSEUSS: Physcomitrium patens (accession No. XP_024399004); MpSEUSS: Marchantia polymorpha subsp. Ruderalis (accession No. OAE35334); Red frame: JcSEUSS1 |
1.2小桐子JcSEUSS1的组织特异性表达模式
分别选取成年小桐子的根、茎、幼叶、成熟叶、花序、雌花、雄花和果实8个组织部位,利用实时荧光定量PCR对小桐子JcSEUSS1基因进行组织特异性表达分析。结果显示:JcSEUSS1在小桐子的各个组织部位均有表达(图3)。在根、幼叶和花序中的相对表达量较高,其中根中的相对表达量最高,且叶片中的表达量明显高于雌雄花。
图3 JcSEUSS1在成年小桐子植株不同组织部位的表达 注: R: 根; S: 茎; YL: 幼叶; ML: 成熟叶; IF: 花序; FF: 雌花; MF: 雄花; Fr: 授粉后40 d的果实 Figure 3 Expression level of JcSEUSS1 in various organs of adult Jatropha curcas Note: R: Roots; S: Stems; YL: Young leaves; ML: Mature leaves; IF: Inflorescences; FF: Female flowers; MF: Male flowers; Fr: Fruits at 40 d after pollination |
1.3超量表达JcSEUSS1促进小桐子叶中的花青素的积累
为了探究JcSEUSS1基因对小桐子生长发育的影响,本研究构建了35S:JcSEUSS1的超量表达载体(图4A),并通过农杆菌介导法转化小桐子。获得14株独立的转基因植株(图4B),随机选取L3、L4和L7 3株T0代转基因株系进行表型分析。qRT-PCR检测发现(图4C):这3株转基因植株叶柄中JcSEUSS1基因的表达量均明显上调;说明L3、L4和L7确实为阳性植株。其中L4表达量最高,表达量比野生型提高40倍,L3表达量最低,表达量比野生型提高约3倍。
图4 转基因小桐子中JcSEUSS1的相对表达量 注: A: 35S:JcSEUSS1超量表达载体; NPT II: 卡那霉素抗性基因; B: PCR鉴定35S:JcSEUSS1转基因植株; M: Trans2K PlusⅡDNA Marker; 1~15: 15个独立的转基因株系(L1~L15); C: 野生型和转基因植株中JcSEUSS1的表达量; Actin: 正对照; WT: 野生型小桐子; 35S: JcSEUSS1: 超量表达JcSEUSS1转基因小桐子; L3,L4,L7: 分别代表JcSEUSS1转基因小桐子株系3, 4和7; 内参基因: JcACT1; 误差线代表标准误SE (n=3); *: p≤0.05; **: p≤0.01 Figure 4 Relative expression of JcSEUSS1 in transgenic Jatropha Note: A: Over-expressed vector of JcSEUSS1; NPT Ⅱ: Kanamycin gene; B: PCR identification of 35S:JcSEUSS1 transgenic plants; M: Trans2K PlusⅡDNA Marker, 1~15: 15 independent transgenic plants (L1~L15); C: The expression level of JcSEUSS1 in wildtype and transgenic plants; Actin: positive control; WT: Wildtype Jatropha; 35S: JcSEUSS1: Transgenic Jatropha with over-expressing JcSEUSS1; L3,L4,L7: The strain 3, 4 and 7 of JcSEUSS1 transgenic Jatropha; Reference gene: JcACT1; Error bars represent SE (n=3); *: p≤0.05; **: p≤0.01 |
随后观察比较T0代转基因株系表型,结果显示:转基因植株叶片和叶柄均明显变红(图5A~图5D)。对幼叶和成熟叶分别进行观察和分析后发现:幼叶叶片颜色变深,明显红于野生型,此外,不同于野生型嫩绿色的叶脉和叶柄,转基因植株的幼叶叶脉和叶柄呈现深红色(图5E)。花青素提取和测量结果显示(图5F):转基因植株幼叶叶片和叶柄的花青素含量均明显高于野生型。3个转基因植株幼叶花青素含量较野生型均提高2倍左右,而叶柄花青素含量提高更明显,转基因植株L3提高约9倍,L4提高约15倍,L7提高约13倍。说明超量表达JcSEUSS1促进小桐子幼叶花青素的合成。
比较转基因植株成熟叶形态,发现野生型和不同转基因植株的成熟叶叶片均呈现绿色,但是转基因株系叶脉和叶柄明显呈红色(图5G)。花青素含量测定后发现(图5H):转基因株系成熟叶叶片和叶柄花青素含量明显高于野生型,其中叶柄花青素提高更明显。L3转基因植株叶片花青素含量提高不显著,L4和L7较于野生型增加显著,而3个转基因植株叶柄花青素含量提高约10倍。结果显示无论成熟叶片还是幼嫩叶片和叶柄中,均是JcSEUSS1表达量最高的L4株系中的花青素含量最高,表达量最低的L3株系中的花青素含量最低。说明超量表达JcSEUSS1促进小桐子叶中花青素的积累。
图5 超量表达JcSEUSS1导致转基因小桐子叶中的花青素含量增加 注: A,B: 野生型小桐子的叶片(A)和叶柄(B); C,D: 35S:JcSEUSS1转基因小桐子的叶片(C)和叶柄(D); E: 野生型和转基因小桐子幼叶背轴面表型; F: 野生型和转基因小桐子幼叶叶片和叶柄中花青素的含量; G: 野生型和转基因小桐子成熟叶的向轴面表型; H: 野生型和转基因小桐子成熟叶叶片和叶柄花青素的含量; WT: 野生型小桐子; 35S:JcSEUSS1: 超量表达JcSEUSS1转基因小桐子; L3, L4, L7: 超量表达JcSEUSS1转基因小桐子株系; *: p≤0.05; **: p≤0.01; 比例尺=3 cm Figure 5: Over-expression of JcSEUSS1 induced the increase of anthocyanin content in leaves and petioles of transgenic Jatropha Note: A,B: Young leaves (A) and petioles (B) in wildtype Jatropha; C,D: Young leaves (C) and petioles (D) in 35S:JcSEUSS1 transgenic Jatropha; E: Phenotype of abaxial side of young leaves of wildtype and transgenic Jatropha; F: the anthocyanin content of young leaves and petioles in wildtype and transgenic Jatropha; G: Phenotype of adaxial side of mature leaves of wildtype and transgenic Jatropha; H: The anthocyanin content of mature leaves and petioles in wildtype and transgenic Jatropha; WT: Wildtype Jatropha; 35S:JcSEUSS1: Over-expressed JcSEUSS1 in transgenic Jatropha; L3,L4,L7: The strain 3, 4 and 7 of JcSEUSS1 transgenic Jatropha; *: p≤0.05; **: p≤0.01; Bar=3 cm |
1.4转基因小桐子幼叶叶柄中花青素合成相关基因表达量上调
对超量表达JcSEUSS1转基因小桐子幼叶叶柄中编码花青素合成关键酶基因JcCHS和JcCHI的相对表达量进行检测。结果显示:野生型小桐子幼叶叶柄花青素含量较低,这两个基因的表达量也很低;但是转基因植株中这两个基因的表达量都明显上调(图6),且JcCHS和JcCHI的相对表达量趋势与JcSEUSS1一致。说明超量表达JcSEUSS1基因可能通过促进小桐子中花青素合成相关基因的表达,从而促进小桐子叶中花青素的积累。
图6 35S:JcSEUSS1转基因小桐子幼叶叶柄中JcCHS和JcCHI的相对表达量 注: WT: 野生型小桐子; 35S:JcSEUSS1: 超量表达JcSEUSS1转基因小桐子; L3, L4, L7: 超量表达JcSEUSS1转基因小桐子株系; 内参基因: JcACT1; *: p≤0.05: **: p≤0.01 Figure 6 Relative expression of JcCHS and JcCHI in young petioles of 35S:JcSEUSS1 transgenic Jatropha Note: WT: Wildtype Jatropha; 35S:JcSEUSS1: Over-expressed JcSEUSS1 in transgenic Jatropha; L3, L4, L7: The strain 3, 4 and 7 of JcSEUSS1 transgenic Jatropha; Reference gene: JcACT1; *: p≤0.05; **: p≤0.01 |
2讨论
SEU基因在拟南芥中的研究较为广泛,拟南芥SEU基因在幼苗、叶、花序芽、花等多个组织部位均有表达,所以SEU基因调控拟南芥营养生长和生殖生长的多个生长发育阶段(Franks et al., 2002; Bao et al., 2010)。本研究发现:JcSEUSS1在小桐子中也是一个类似组成型表达的基因,且调控小桐子不同组织部位,包括叶片、雄花、果实和种子的生长发育过程。说明与其他物种比较,JcSEUSS1不仅在蛋白序列上高度保守,而且基因功能也很保守。在拟南芥中,SEU基因在花中的表达量明显高于叶片中的表达量,所以SEU主要调控了拟南芥花的发育(Franks et al., 2002)。但是在小桐子中,JcSEUSS1在叶片中的表达量明显高于雌雄花,所以SEU基因的功能在小桐子和拟南芥中可能存在一定差异,JcSEUSS1对小桐子叶发育的影响可能强于其对花发育的影响。
本研究发现,超量表达JcSEUSS1基因会促进小桐子叶中花青素的积累,目前其他物种中还没有SEU基因调控植物花青素合成的相关报道。拟南芥中虽然没有报道过SEU调控花青素合成的功能,但是发现SEU与花青素合成关键酶之间存在调控关系:无论在暗培养还是持续光照条件下,相较于野生型,其突变体seu-6中编码类黄酮合成的关键酶基因CHS的表达量都明显上调(Huai et al., 2018)。SEU可与PIF4相互作用,二者均负调控拟南芥的光形态发生,且正调控温度介导的下胚轴伸长 (Huai et al., 2018);而PIF4属于helix-loop-helix (bHLH)转录因子家族成员,是红光诱导花青素积累的负调控因子(Liu et al., 2015)。在本研究中,我们发现超量表达JcSEUSS1会导致JcCHS和JcCHI基因的表达量明显上调(图6),qPCR检测结果显示转基因植株中JcSEUSS1表达量明显上升并未发生基因沉默(图4)。这与拟南芥中SEU影响CHS的表达结果(Huai et al., 2018)相反,说明小桐子JcSEUSS1基因的功能与模式植物拟南芥中的同源基因的功能可能存在差异。该差异有可能与本研究中的转基因小桐子种植于光照较强、温度较高的热带地区相关,因为已有研究表明光照强度和光质对植物花青素积累存在重要调节作用(Dong et al., 1998)。植物CHS基因编码查尔酮合成酶,是类黄酮合成过程中的第一个关键酶(Tropf et al., 1995)。CHS基因的表达需要UV-B和UV-A/蓝光的诱导(Christie and Jenkins, 1996)。拟南芥中,超量表达CHS基因可增加叶片对强光的耐受能力(Zhang et al., 2018)。CHI编码查尔酮异构酶,其功能主要是将CHS催化产生的黄色查尔酮转变为无色的黄烷酮,CHI也是花青素合成途径的关键酶(Burbulis and Winkel-Shirley, 1999)。其表达也需要光的诱导(Song et al., 1998)。由此可见,CHS和CHI均为植物光诱导花青素合成代谢通路所必须的酶,而在小桐子JcSEUSS1基因超量表达植株中JcCHS和JcCHI的表达量都明显上调,说明JcSEUSS1可能参与了小桐子光诱导花青素合成代谢通路,通过调控JcCHS和JcCHI基因的表达来促进小桐子叶中的花青素含量的积累。
小桐子主要在光照和紫外线都较强的热带和亚热带地区种植,而花青素具有光保护作用(Lucho-Constantino et al., 2017; 庞丹丹等, 2018);本研究中获得的超量表达JcSEUSS1转基因植株叶片和叶柄中花青素含量提高了2~10倍(图5F, 图5H),因而可尝试将这些转基因材料用于培育抗逆的小桐子优良品种。
3材料与方法
3.1植物材料和种植
本实验所用小桐子,幼苗培养于云南省昆明市西双版纳热带植物园昆明分部组培室(25°05′N, 102°69′E),温度为(26±2)°C,光照为14 h/d。成年植株种植于云南省西双版纳自治州勐腊县勐仑镇中国科学院西双版纳热带植物园(21°41′N, 101°25′E),年平均气温21.4°C,年降雨量1 556 mm。
3.2小桐子JcSEUSS1全长cDNA的克隆
利用硅胶吸附法提取两年生小桐子的根、茎、幼叶(自茎尖展叶开始的第二片幼叶)、成熟叶(自茎尖展叶开始的第八片叶)、花序、雌花、雄花和生长40 d的果实的总RNA (Ding et al., 2008)。并用琼脂糖凝胶电泳和NanoDrop 2000分光光度计对小桐子RNA的质量和浓度进行检测。再参考TAKARA (大连, 中国) PrimeScript TH Reagent Kit with gDNA Eraser说明书将RNA反转录为cDNA。以小桐子基因组数据库(http://www.kazusa.or.jp/jatropha/)得到的JcSEUSS1核苷酸序列为模板,使用Primer5设计引物XC772和XC773 (表1),并扩增JcSEUSS1的全长cDNA。
表1 本研究所用PCR引物序列 Table 1 PCR primer sequences used in this study |
3.3实时荧光定量PCR
首先在NCBI网站(https://www.ncbi.nlm.nih.gov/)上设计基因的qRT-PCR引物,再以cDNA为模板,使用Roche的LightCycler 480 SYBR Green I Master试剂盒进行qRT-PCR实验,使用LightCycler 480软件对导出数据进行分析,使用Sigmablot软件作图。以小桐子JcACT1基因作为内参,试验采用3次生物学重复。
3.4 35S:JcSEUSS1质粒构建和转化小桐子
将测序正确无碱基突变的JcSEUSS1全长cDNA序列用BamHI和SalI限制性内切酶切割以后连接到含有CaMV 35S启动子和35S增强子的pOCA30载体上,构建超量表达载体35S:JcSEUSS1,利用农杆菌介导转化法转化小桐子。本试验以小桐子种子的子叶作为转化外植体进行农杆菌侵染,再利用卡那霉素抗性和PCR扩增筛选阳性植株(Pan et al., 2010; Fu et al., 2015)。
3.5小桐子花青素的提取
本试验参考修改后的Gou等(2011)的花青素提取方法,取1 g一年生的小桐子组织样品,液氮速冻碾磨后,加入4 mL的花青素提取液(5%的盐酸和80%的甲醇),混匀后置于4°C过夜,14 000 r/min离心20 min,取上清。使用NanoDrop2000分光光度计分别于530 nm、620 nm、650 nm 3个波长下测量OD值。
花青素含量(nmol/g)=ODλ/Ɛ×v/m×1 000 000
花青素的光密度值ODλ=(OD530-OD620)-0.1 (OD650-OD620)
ODλ:花青素的光密度值,Ɛ:花青素的摩尔消光系数4.62×106,v:萃取液的总体积(mL),m:样品质量(g)。
作者贡献
王静娴是本实验研究的执行者,完成了实验数据分析以及初稿的写作;明新、陶彦彬、唐明勇和徐增富在实验过程中提供了帮助并参与了论文的修改;唐明勇和徐增富是项目的构思者及负责人,指导实验设计和数据分析。全体作者都阅读并同意最终的文本。
致谢
本研究由云南省科技厅科技计划面上项目(2018FB060)、国家自然科学基金委青年科学家基金项目(31700273)和中国科学院项目(kfj-brsn-2018-6-008, 2017XTBG-T02)共同资助。
Ahmed N.U., Park J.I., Jung H.J., Yang T.J., Hur Y., and Nou I.S., 2014, Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa, Gene, 550 (1): 46-55
Azhakanandam S., Nole-Wilson S., Bao F., and Franks R.G., 2008, SEUSS and AINTEGUMENTA mediate patterning and ovule initiation during gynoecium medial domain development, Plant Physiol., 146(3): 1165-1181
Bao F., Azhakanandam S., and Franks R.G., 2010, SEUSS and SEUSS-LIKE Transcriptional adaptors regulate floral and embryonic development in Arabidopsis, Plant Physiol., 152(2): 821-836
Burbulis I.E., and Winkel-Shirley B., 1999, Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway, P. Natl. Acad. Sci. USA, 96(22): 12929-12934
Christie J.M., and Jenkins G.I., 1996, Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells, Plant Cell, 8(9): 1555-1567
Cuyckens H., and Claeys M., 2004, Mass spectrometry in the structural analysis of flavonoids, J. Mass. Spectrom., 39(4): 461-461
Ding L.W., Sun Q.Y., Wang Z.Y., Sun Y.B., and Xu Z.F., 2008, Using silica particles to isolate total RNA from plant tissues recalcitrant to extraction in guanidine thiocyanate, Anal. Biochem., 374(2): 426-428
Dong Y.H., Beuning L., Davies K., Mitra D., Morris B., and Kootstra A., 1998, Expression of pigmentation genes and photo-regulation of anthocyanin biosynthesis in developing Royal Gala apple flowers, Aust. J. Plant Physiol., 25(2): 245-252
Du X., Li D., Xin H., Zhou W., Yang R., Zhou K., and Hu C., 2019, The conversion of Jatropha oil into jet fuel on NiMo/Al-MCM-41 catalyst: intrinsic synergic effects between Ni and Mo, Energy Technology, 7(5): 1800809
El-Kereamy A., Chervin C., Roustan J.P., Cheynier V., Souquet J.M., Moutounet M., Raynal J., Ford C., Latche A., Pech J.C., and Bouzayen M., 2003, Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries, Physiol. Plantarum, 119(2): 175-182
Ferrer J.L., Austin M.B., Stewart C., and Noe J.P., 2008, Structure and function of enzymes involved in the biosynthesis of phenylpropanoids, Plant Physiol. Bioch., 46(3): 356-370
Franks R.G., Wang C.X., Levin J.Z., and Liu Z.C., 2002, SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG, Development, 129(1): 253-263
Fu Q., Li C., Tang M., Tao Y.B., Pan B.Z., Zhang L., Niu L., He H., Wang X., Xu Z.F., 2015, An efficient protocol for Agrobacterium-mediated transformation of the biofuel plant Jatropha curcas by optimizing kanamycin concentration and duration of delayed selection, Plant Biotechnol. Rep., 9(6): 405-416
Gong X., Flores-Vergara M.A., Hong J.H., Chu H.W., Lim J., Franks R.G., Liu Z.C., and Xu J., 2016, SEUSS integrates gibberellin signaling with transcriptional inputs from the SHR-SCR-SCL3 module to regulate middle cortex formation in the Arabidopsis root, Plant Physiol, 170(3): 1675-1683
Gou J.Y., Felippes F.F., Liu C.J., Weigel D., and Wang J.W., 2011, Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor, Plant Cell, 23(4): 1512-1522
Govender N., Mohamed-Hussein Z.A., and Wickneswari R., 2019, Transcriptomic view of Jatropha curcas L. inflorescence, Challenges for a New Energy Crop, 3: 111-130
Hara M., Oki K., Hoshino K., and Kuboi T., 2003, Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus) hypocotyl, Plant Sci., 164(2): 259-265
Holton T.A., and Cornish E.C., 1995, Genetics and biochemistry of anthocyanin biosynthesis, Plant Cell, 7(7): 1071-1083
Huai J.L., Zhang X.Y., Li J.L., Ma T.T., Zha P., Jing Y.J., and Lin R.C., 2018, SEUSS and PIF4 coordinately regulate light and temperature signaling pathways to control plant growth, Mol. Plant, 11(7): 928-942
Khan K., Kumar V., Niranjan A., Shanware A., and Sane V.A., 2018, JcMYB1, a Jatropha R2R3 MYB transcription factor, modulates lipid biosynthesis in transgenic plants, Plant Cell Physiol., 60(2): 462-475
Kim M.J., Yang S.W., Mao H.Z., Veena S.P., Yin J.L., and Chua N.H., 2014, Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas, Biotechnol. Biofuels., 7(1): 36
Li C.Q., Fu Q.T., Niu L.J., Luo L., Chen J.H., and Xu Z.F., 2017, Three TFL1 homologues regulate floral initiation in the biofuel plant Jatropha curcas, Sci. Rep., 7: 43090, DOI: 10.1038/srep43090
Li C.Q., Luo L., Fu Q.T., Niu L.J., and Xu Z.F., 2014, Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas, BMC Plant Biol. 14: 125
Li Y.L., Fang H., and Xu W.F., 2007, Recent advance in the research of flavonoids as anticancer agents, Mini. Rev. Med. Chem., 7(7): 663-678
Liu Z.J., Zhang Y.Q., Wang J.F., Li P., Zhao C.Z., Chen Y.D., and Bi Y.R., 2015, Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings, Plant Sci. 238: 64-72
Lucho-Constantino G.G., Zaragoza-Martinez F., Ponce-Noyola T., Cerda-Garcia-Rojas C.M., Trejo-Tapia G., Esparza-Garcia F., and Ramos Valdivia A.C., 2017, Antioxidant responses under jasmonic acid elicitation comprise enhanced production of flavonoids and anthocyanins in Jatropha curcas leaves, Acta Physiol. Plant., 39(8): 165
Mori K., Goto-Yamamoto N., Kitayama M., and Hashizume K., 2007, Loss of anthocyanins in red-wine grape under high temperature, J. Exp. Bot., 58(8): 1935-1945
Ni J., Gao C.C., Chen M.S., Pan B.Z., Ye K.Q., and Xu Z.F., 2015, Gibberellin promotes shoot branching in the perennial woody plant Jatropha curcas, Plant Cell Physiol, 56(8): 1655-1666
Ni J., Zhao M.L., Chen M.S., Pan B.Z., Tao Y.B., and Xu Z.F., 2017, Comparative transcriptome analysis of axillary buds in response to the shoot branching regulators gibberellin A3 and 6-benzyladenine in Jatropha curcas. Sci. Rep., 7(1): 11417
Pan J., Fu Q., and Xu Z.F., 2010, Agrobacterium tumefaciens-mediated transformation of biofuel plant Jatropha curcas using kanamycin selection, Afr. J. Biotechnol., 9(39): 6477-6481
Pandey V.C., Singh K., Singh J.S., Kumar A., Singh B., and Singh R.P., 2012, Jatropha curcas: A potential biofuel plant for sustainable environmental development, Renew. Sust. Energ. Rev., 16(5): 2870-2883
Pang D., Zhang F., Zhang Y., Wei K., Wang L., and Cheng H., 2018, Research advance on biosynthesis, regulation and function of anthocyanins in tea plant, Chaye Kexue (Journal of Tea Science), 38(6): 606-614 (庞丹丹, 张芬, 张亚真, 韦康, 王丽鸳, 成浩, 2018, 茶叶花青素合成、调控及功能的研究进展, 茶叶科学, 38(6): 606-614)
Ranjan S., Singh R., Singh M., Pathre U.V., and Shirke P.A., 2014, Characterizing photoinhibition and photosynthesis in juvenile-red versus mature-green leaves of Jatropha curcas L., Plant Physiol. Bioch., 79: 48-59
Song J.Y., Lee J.S., and An C.S., 1998, Expression of CHS, CHI, and DFR genes in response to light in small radish seedlings, J. Plant Biol., 41(4): 277-282
Sperdouli I., Moustakas M., 2012, Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress, J. Plant Physiol., 169(6): 577-585
Sridhar V.V., Surendrarao A., and Liu Z.C., 2006, APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development, Development, 133(16): 3159-3166
Tropf S., Karcher B., Schroder G., and Schroder J., 1995, Reaction-mechanisms of homodimeric plant polyketide synthases (stilbene and chalcone synthase). A single active-site for the condensing reaction is sufficient for synthesis of stilbenes, chalcones, and 6'-deoxychalcones, J. Biol. Chem., 270(14): 7922-7928
Wu X.L., Gu L.W., Prior R.L., McKay S., 2004, Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity, J. Agric. Food Chem., 52(26): 7846-7856
Wynn A.N., Seaman A.A., Jones A.L., and Franks R.G., 2014, Novel functional roles for PERIANTHIA and SEUSS during floral organ identity specification, floral meristem termination, and gynoecial development. Front. Plant Sci., 5: 130
Zhang W., Curtin C., Kikuchi M., and Franco C., 2002, Integration of jasmonic acid and light irradiation for enhancement of anthocyanin biosynthesis in Vitis vinifera suspension cultures, Plant Sci., 162(3): 459-468
Zhang X.H., Zheng X.T., Sun B.Y., Peng C.L., and Chow W.S., 2018, Over-expression of the CHS gene enhances resistance of Arabidopsis leaves to high light, Environ. Exp. Bot., 154: 33-43
Zhang Y., Butelli E., De Stefano R., Schoonbeek H.J., Magusin A., Pagliarani C., Wellner N., Hill L., Orzaez D., Granell A., Jones J.D.G., and Martin C., 2013, Anthocyanins double the shelf life of tomatoes by delaying overripening and reducing susceptibility to gray mold, Curr. Biol., 23(12): 1094-1100